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The suitability of an Euler-level two-fluid theory to describe the behaviour of gas 
mixtures with disparate masses is explored for the problem of sound propagation at  
frequencies high enough that dispersion effects are important. The determination of 
the speed of propagation is reduced to solving a quadratic equation in the complex 
plane. The model leads to small errors of the order of the molecular mass ratio M 
when the molar fraction xp of the heavy gas is small (xp = O ( M ) ) ,  becoming 
increasingly inaccurate at  larger values of zp. Yet agreement with He-Xe experiments 
is excellent for the whole range of frequencies tested, up to values of xp = 0.4. For 
values of zp above 0.5 our quantitative results become poorer but they still agree 
qualitatively with experiments, predicting small and negative dispersion coefficients 
and the presence of a bifurcation at critical values of the frequency and the 
composition. It is concluded that this generalized Euler theory provides an excellent 
framework within which to  develop a two-fluid boundary-layer description of the 
peculiar dynamics of disparate-mass mixtures in the region of parameters of greatest 
industrial interest. 

1. Introduction 
The non-equilibrium behaviour of mixtures of two gases with large disparities in 

their molecular weights is considerably richer than that of mixtures made of similar 
gases, because very different internal relaxation timescales are present simultaneously. 
The two fast timescales occurring are those of Maxwellization of each species, given 
roughly by the time between self-collisions, of the order of ,u6/pt, where ,u6 and pi are 
the coefficient of viscosity and the partial pressure of one of the species (i) alone. 
Because the viscosity coefficient of a pure neutral gas is roughly mass-independent, 
these two self-equilibration times are comparable with each other,T unless one of the 
species is in a small molar proportion in the mixture (i.e. p ,  % p, ) .  The slow scale is 
that characterizing the transfer of energy between the two species, which, for purely 
mechanical reasons, is slower than the Maxwellization scale by a factor of the order 
of mp/m, the ratio of masses between the heavy (subscript p for particle) and the 
light molecule. Such a picture suggests that the system may be characterized by the 
standard laws of hydrodynamics only when the external excitation time is large 

t In an interesting paper advancing many of the ideas underlying the treatment of disparate-mass 
mixtures, Grad (1960) stated that the rates of self-relaxation would be faster for the light than for 
the heavy gas by a factor of the order of the square root of the mass ratio. Although the validity 
of such a scaling has often been accepted in the literature, it does not hold at all for the important 
case of the noble gases, whose viscosity coefficients at 20 "Care 194.1,311.1,221.7,250.4 and 226.0 
micropoises for He, Ne, A, Kr and Xe, respectively. The self-collision relaxation times are thus 
practically independent of the molecular weight. 
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rclative to the slow scale. In the much broader region in which the characteristic 
excitation time is large compared to the fast relaxation time and comparable to the 
slow one, the problem may still be described within a generalized hydrodynamic 
framework, because the two species have near-Maxwellian distribution function with 
two different temperatures, and perhaps also two different mean velocities. To 
proceed with rigour, one has to go through a sort of two-fluid Chapman-Enskog 
procedure in order to generate hydrodynamic equations with correct transport 
coefficients. Short of that laborious exercise, several two-fluid equations have been 
derived for the special case of Maxwell molecules by Goldman & Sirovich (1967), 
Hamel (1966), Goebel, Harris & Johnson (1976), and others (see Goebel et al. 1976). 

Obviously, the acoustic problem is, by its simplicity, best suited to check the 
validity of these theories against experiments. A first test of Goldman’s (1968) 
predictions for sound absorption was made by Prangsma, Jackson & Beenakker 
(1970) on the basis of their own measurements in He-Ar mixtures, with good results 
for Argon molar fractions xAr = 0.1 and 0.25; but less good for xAr = 0.05, 0.5 and 
0.75. Pointing out that, unlike absorption, dispersion cannot be predicted by the 
Navier-Stokes equations (not even at  small frequencies), Fuentes Losa & Foch (1972) 
compared their measurements on initial (low frequency) sound dispersion for H e A r  
mixtures with a direct solution of the Boltzmann equation (Foch, Uhlenbeck & 
Fuentes Losa 1972). Such a test gave excellent results for all compositions, but was 
confined to frequencies small compared to the inverse of the small relaxation time, 
because the Boltzmann equation had been solved in an expansion in powers of the 
frequency. 

Perhaps the most interesting findings of Fuentes Losa & Foch are those on 
dispersion in He-Xe mixtures (unpublished), available only in Fuentes Losa’s (1972) 
thesis, and showing negative dispersion coefficients in Xe-rich mixtures. More 
recently, Huck & Johnson (1980) have explored the predictions of the two-temperature 
model of Goebel et al. (1967) for He-Xe mixtures. Their striking predictions on two 
different propagating modes at frequencies still within the range of validity of the 
model are a remarkable exponent of the richness of the problem. A number of these 
unusual features have been confirmed experimentally by Bowler (1984) and Bowler 
& Johnson (1985), which explores a range of concentrations and frequencies broader 
than that studied by Fuentes Losa. At this point, the finest available experiments 
to test two-fluid theories are those involving He-Xe mixtures. With a ratio mp/m 
more than three times larger than for He-Ar mixtures, such data ought to give 
excellent results when compared to a theory exploiting systematically the existing 
mass disparity. The purpose of this paper is, therefore, to compare such data with 
the lowest order (Euler level) two-fluid theory, and to suggest ways to systematically 
improve this model. 

The fluid-dynamic importance of the Euler equations, particularly when coupled 
to boundary-layer theory, is too monumental for us to try to make its defence here. 
Obviously, the additional complexities involved in two-fluid hydrodynamic equations 
provide a greater stimulus towards exploring the possible usefulness of a generalized 
two-fluid Euler theory, as a first step prior to the development of a two-fluid 
boundary-layer theory. Some novel technologies have started to exploit the very 
remarkable behaviour of heavy gases (carried in He or HJ, whose large inertia can 
be used to induce energetic surface collisions (tens of eV) at extremely high fluxes 
(Fernandez de la Mora 1985). These potential new applications call for improvements 
in existing techniques for computing the evolution of such exotic gas mixtures, and 
a first step in this direction is to explore whether a two-fluid Euler theory can play 
a similarly fruitful role in this new field to that which Euler’s equations play in 
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ordinary fluid mechanics. We shall conclude that, for the acoustic problem, a two-fluid 
Euler theory yields excellent results over the whole frequency range of interest and 
up to a molar fraction of Xe in He of around 0.4, fully covering the region of parameter 
values where disparate-mass mixtures are of practical relevance. 

2. Governing equations 
The governing equations are derived by assuming that the two species have 

different Maxwellian velocity distribution functions, with mean velocities Up and U 
and temperatures Tp and T for the heavy and the light gas, respectively. One may 
write the convective terms in the conservation equations for the mass, momentum 
and energy for each of the gases, in total analogy with the case of a pure gas, by 
realizing that, in the particular reference frame moving with the mean speed of one 
of the species, its viscous stress tensor and heat flux are zero for a Maxwellian 
distribution function. However, there is now a net interchange of momentum and 
energy between the two species which may be computed from the appropriate 
Boltzmann collision integral (Burgers 1969) since the velocity distribution functions 
of the two species are specified. When the velocity difference Up- Uis small compared 
to the sound speed of the light gas, these momentum and energy coupling terms are 
linear in the velocity and temperature differences. Such a condition is obviously 
satisfied in the acoustic problem, where we may also linearize around the unperturbed 
densities po,  p p o ,  temperature T, (the same for the two species) and null mean 

( 1 )  
velocities : 

P = PO+P’, 

P p  = P p o  + P;,  
T =  T,+T,  

Tp = T,+Tk, 

where the quantities with and without a subscript p refer to the heavy and the light 
species respectively. The linearized conservation equations for the two monatomic 
gases are 

atp’+pov*u= 0, ( 5 )  

2pp0m T -T 

Pomp 7 
a,T+$T,V.U= - 9  (7) 

2(Tp-T) at Tp +gT, V* Up = - , 
7 

and the partial pressures are, for Maxwellian distributions, 

PkT p = - ,  m 

P kT p ,  = -. 
m, 
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The constant T is the slow relaxation time governing the rates of interspecies 
momentum and energy transfer. It is related to the mixture diffusion coefficient D 
through Einstein’s relation 

Dm n + n  
kT n 

7 = 2 2 ,  

where n1 = pt/mt is the number density of species i. 
The principal limitation of these equations arises from our neglect of heat fluxes 

and viscous stresses. The relative importance of viscous effects measured by the 
dimensionless frequency p r  w/pc ,  which may be written 

for the light and heavy gas, respectively. Sc and Sc, are the diffusivity ratios 

Pi sc - ‘ - m(n+np) D ’  

which take the values 2.33 and 2.71 for He and Xe respectively, in a He-Xe mixture. 
Accordingly, the viscous corrections are some M = m/m, times smaller than WT,  and 
(6) and (9) contain errors of order M when WT takes values up to order one. A similar 
conclusion may be reached for the heavy-gas energy equation (lo), where the 
neglected heat flux is also of order MWT. But the heat flux term neglected in the 
light-gas energy equation (7) is of order pw/(pck) with respect to  the i?T/at term, 
where cR is the mixture sound speed. This term is thus negligible only if pck  is 
comparable to p ,  a condition which becomes less and less true as the heavy gas is 
more concentrated. For that reason, the present two-fluid Euler model is correct to 
lowest order in M only for moderate values of the molar fraction of the heavy gas. 

Let us now assume plane waves in which the linearized hydrodynamic quantities 
depend on time and position through the factor 

f’ =to exp (iwt-iihz), (14) 
and introduce the notation 

-ia = W T ,  (15) 

m M E - ,  
mP 

U 
y E -, 

C 
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(21 )  

(22) 

T 

T' 

Z E -  
T,' 

z =9, 
p -  T, 

where M and E are the mass and density ratios, a is a (purely imaginary) frequency 
parameter, and y is a dimensionless complex speed of sound entering into the problem 
as an eigenvalue. Eliminating the densities by means 
equations we obtain 

~EM(z,-z) 
z-%- a = 0, 

2(2,-z)  
= 0. 

zp-iYp+ a 

Before evaluating the speed of sound, it is worth taking 
two equations for the temperatures ( ( 2 5 ) ,  ( 2 6 ) )  to obtain 

z-zp = Z-l(y-yp), 

3 3  
2 a  

Z = -+-(1 +ME). where 

of the mass conservation 

(23 )  

(24 )  

(25 )  

(26 )  

the difference between the 

( 2 7 )  

( 2 8 )  

Accordingly, the velocity and the temperature differences for the acoustic problem 
are in a constant ratio, with the proportionality coefficient Z. The group EM is the 
ratio of unperturbed number densities, np/n, so that E is a quantity of order unity 
except in the low-frequency limit, and in the Lorentz limit n np. Accordingly, 
except in these two extreme cases, it is not consistent to allow for two different 
temperatures without having also two different velocities. This conclusion seems to 
contradict the common view that the energy, and not the momentum, is inefficiently 
transferred between different species, so that more temperature than velocity 
separation should be expected. Indeed, if one considers a homogeneous medium 
(a/& = 0) where two species have different initial velocities and temperatures, 
combining ( 6 )  and (9), and ( 7 )  and ( l o ) ,  respectively, one obtains the relaxation times 
7 ,  = 7/( 1 + E) and 2~~ = T / (  1 +ME) for the velocity and temperature slip respectively. 
Therefore, except in the limit where the heavy gas is dilute (8  N l ) ,  the velocity 
differences do relax much faster than the differences in temperatures. But this 
conclusion holds only in the absence of spatial gradients. In our acoustic problem 
there are velocity gradients which lead to compressive heating of each gas propor- 
tionally to its own velocity gradient. Indeed, the only driving force leading to 
temperature differences in our model is precisely the velocity difference, as expressed 
in ( 2 7 ) .  The dimensionless temperature slip is thus, at best, two-thirds of the 
dimensionless velocity slip, and the conclusions reached for a homogeneous situation 
cannot be extrapolated into the acoustic problem. An interesting corollary of this fact 
is that, for E large, both velocity and temperature slip are small, and dispersive effects 
will necessarily be small. 
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3. The speed of propagation 

quadratic equation 

where we have introduced the new velocity variable 

The condition for non-trivial solutions of the system (23)-(26) fixes y through the 

qa2-(2+q+l)u+Z = 0, (29) 

5 l+HE 
0- -~ 

3y 1 + € ’  

which is equal to one in the equilibrium limit (a = 0), and 

k( l+- - )  E + 1  (1+ME)2 - 1 
(1-M)2 E ’  

For the present situation where the frequency w is real, the speed of propagation 
cR is given by 

= Re(&). (31) 
CR 

where c, is the zero-frequency speed of sound for the mixture, 

Therefore, the problem of finding the sound speed of the mixture reduces to solving 
a quadratic equation in the complex plane, and evaluating the inverse of the real part 
of the square root of u. The two resulting roots are characterized by very different 
absorption coefficients at low frequencies, so that only the least damped of the modes 
may be observed. But at higher frequencies, both modes have comparable absorption, 
and may be present simultaneously (see Huck & Johnson 1980). Some results are 
shown in figure 1 for the mode dominating at  low frequency end the particular case 
M = 4/131.3 (HeXe).  

4. Comparison between theory and experiments 
Because of the considerable differences in precision and range of parameters 

covered by the two available sources of experimental data on sound speed in He-Xe 
mixtures, we will discuss them separately, starting with Fuentes Losa. 

In order to avoid corrupting the accuracy of the sound speed results with the less 
precise information available on species composition, the data will be made 
dimensionless in a concentration-independent fashion. We will thus use cR/c0 for our 
dependent variable, where co is the equilibrium sound speed of the pure light gas, 
defined by 

5 kT 2 - - 0  c o - 3  m ’  

Similarly, we introduce the frequency variable 

8’ = w7(1--zp), 

(33) 

(34) 
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FIQURE 1. Non-dimensional inverse sound speed co/cR us. the frequency parameter 8' = WT( 1 - zp) 
for various values of the Xe molar fraction zp. Dotted lines correspond to the predictions of the 
two-fluid Euler theory, while open data symbols are from Fuentes Losa (1972) for nominal values 
of xo = 0.01, 0.03, 0.05, 0.1, 0.15, 0.2, 0.3, 0.7, 0.8 and 0.9, increasing upwards. Only the mode 
dominating a t  low frequency is displayed. Filled data symbols from Bowler (1984) for reported 
concentrations zfi of 0.2, 0.3, 0.4, 0.55, 0.6, 0.7 and 0.8. The abscissa gives values of 

where xp is the molar fraction of the heavy species 

np x =  
(n+np) '  

From (13), s' may be expressed as 
, wm,D(n+n,) 
s =  

Pt 

(35) 

where pt  = p + p p  is the total pressure of the mixture, reported in the experiments, 
while the group D(n+np) is pressure and composition independent to the first 
approximation in the Chapman-Enskog theory. Therefore s' may be obtained from 
the data without knowledge of the value of xp. The temperature dependence of the 



376 J .  Fernandez de la Mora and A .  Puri 

diffusion coefficient D can be fitted to the data reported by Vargaftik (1 975) for He-Xe 
mixtures a t  one atmosphere as 

leading to 

T 1.7 

D = 0.473( ) cm2/s, 
273.3 K (37) 

The converted experimental data have been plotted also in figure 1. 
Notice first the general trends predicted by the model. For small values of xp, co/cR 

falls monotonically from the zero-frequency (equilibrium) value, to the high-frequency 
asymptote (unity), corresponding to  the limit where the light gas oscillates on its own, 
uncoupled from the heavy molecules. For values of xp close to unity, co/cR increases 
monotonically (negative dispersion, first observed and predicted by Fuentes Losa) 
towards the pure heavy-gas equilibrium speed of s0und.t Obviously, there must be 
a critical value of xp separating the curves which asymptote at high frequencies 
towards the pure light-gas sound speed from those asymptoting to the pure heavy-gas 
speed of propagation. Indeed, at a value of s‘ N 1.36 and xp N 0.52, the discriminant 
of the quadratic equation (29) vanishes, and the roots cross through a singular point 
where the curve cR us. s’ bends itself abruptly through 90 degrees. This singular 
behaviour is similar to that described in greater detail by Huck & Johnson (1980).$ 
Obviously, there is no dispersion for the two extreme cases of pure gases, since the 
governing equations reduce to Euler’s. 

Notice that the theoretical curves for xp = 0.0086, 0.0274, 0.041 1 ,  0.0884, 0.1291, 
0.1796 and 0.275 go nearly through the experimental points for which xp was reported 
to be0.01,0.03,0.05,0.1,0.15,0.20and0.30respectively. Suchnominal concentrations 
cannot be correct because the equilibrium sound speed corresponding to these 
reported concentrations does not coincide with the value of cR resulting from 
extrapolating the data to zero frequency (see Fernandez de la Mora 1984, table 
1). We therefore attribute the disagreement in the xp label to inaccuracies in the 
measurement of xp. But once the experimental value of xp is inferred from the 
zero-frequency value O ~ C ,  extrapolated from the data, the agreement between theory 
and experiments is excellent for concentrations up to 0.3. For concentrations above 
0.6, experiments and theory show that dispersion is relatively small and negative. 
But the predicted values are clearly larger than those observed. This disagreement 

t This simple asymptotic behaviour at large frequencies arises from considering (23)-(26) in the 
limit a % i. To lowest order (a = 03) the coupling terms disappear, and the gases behave as if they 
were alone. The propagation speeds of the two modes thus degenerate into the sound speeds for 
the two pure gases, with ( C , , / C ~ ) ~  becoming 1 and M-l ,  while their corresponding eigenvectors 
(y, z ,  yp, zp) are ( 1 ,  5, 0 , O )  and (0,  0,1,  t) respectively. To lowest order the amplitude of oscillation is 
null for the gas which is not directly responsible for the propagation. The coupling can be obtained 
to first order in the inverse frequency, together with the corresponding coefficients of absorption, 
which scale with x and xp respectively. This result is consistent with the fact that the mode observed 
in Xe-rich mixtures is the slow one, while the fast mode occurs in He-rich mixtures. But the value 
of x,, at which the two asymptotic absorptions coincide is different from the critical one. 

$ To lowest order in M ,  the condition that the discriminant of (29) vanishes takes the form 
xp = 5(a’+2) [7a’+8-(5a’+6)~(9a’+10)~]/(8a’).Thecriticalvaluesx,* andairnay be foundasthe 
intersection of this expressions’s right-hand side with the real axis when a’ is purely imaginary, 
yielding 5; = 1.3159740 and x,* = 0.518790. Bowler & Johnson (1985) report predictions for the 
critical values 8; and x; of 1.387 and 0.505 for Maxwellian molecules, and 1.276 and 0.495 for hard 
spheres. The agreement between their model and ours is thus quite good, even though our results 
cannot be very precise for such high concentrations of Xe (pp/p = 35). 
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will be rationalized below, and used to motivate future refinements for the present 
theory. 

Figure 1 shows also the experimental points of Bowler (1984), also reported by 
Bowler & Johnson (1985). These data have the extremely interesting feature of 
reaching the critical region s' N 2, covering also the range of concentrations 
0.4 < xp < 0.6 left unexplored by Fuentes Losa. Clearly, our previous conclusions are 
confirmed further by these new data. Provided that xp 5 0.4, the two-fluid Euler 
theory yields excellent predictions in all the frequency range tested. For xp 5 0.5, 
the dispersions obtained by Bowler & Johnson (1985) are far smaller than ours, and 
if the present model seemed poor against the data of Fuentes Losa, it leaves even 
more to be desired at these high frequencies. Bowler & Johnson have compared their 
experimental results with a two-temperature theory based on Grad's 13 polynomial 
expansion. Their predictions fit the experimental data reasonably well for the 
supercritical values of xp, if one takes into account how abruptly the sound speed 
depends on all parameters near the (branch point) singularity. Our predictions are 
superior, however, for xp 2 0.4, although the comparison is clouded again by what 
appears to be inaccuracy in the measurement of xp : the extrapolated experimental 
zero-frequency sound speeds do not agree with the equilibrium values of (32). It is 
striking that the data for which both Bowler and Fuentes Losa have reported 
concentrations xp of 0.2, 0.3, 0.7, and 0.8 agree with each other in missing the 
equilibrium sound speed by similar amounts (figure 1). Such a coincidence has made 
us wonder whether there might be a fundamental reason behind this low-frequency 
mismatch between experiments and equilibrium sound speed. The only source of error 
involved in (32) of which we can think is associated with non-ideality of the gas. But 
this effect appears to be negligible, because, for Xe (the most non-ideal component 
of the mixture, with a critical temperature of 289.7 K), the product B p n p  between 
the virial coefficient and the number density takes the value 2.4 x lov4 for the highest 
pressures of Bowler & Johnson. Furthermore, the observed mismatch shows trends 
opposite to those one would expect from non-idealities, increasing for decreasing 
partial pressures of Xe. The alternative hypothesis that the Xe might have been 
contaminated is ruled out (except for H, contamination) because the observed sound 
speed is greater than the equilibrium value. Therefore, unless the Xe was contaminated 
with a lighter gas, we must conclude that both Fuentes Losa and Bowler & Johnson 
overmeasure the value of xp. Such an interpretation finds strong support in the good 
agreement obtained between experiments and our own theory in the concentration 
range where our errors are of the order of M (see also Fernandez de la Mora 1984). 
But because neither of the two experimental sources have addressed the question of 
accuracy in the measurement of xp, the matter must remain unresolved for the 
moment. 

5. Dispersion at low frequencies 
Additional insight on why the two-fluid Euler theory works so well below values 

of xp = 0.3, and why it is deficient for xp 2 0.6, may be obtained through a study 
of the behaviour at the low frequencies at which the most accurate experiments are 
available. Let us define the dispersion coefficient as the initial slope of the curve 
CJCR us. Is',, 
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To determine d,, let us obtain IS in a power expansion in terms of the frequency, using 
the imaginary variable 

a’ = is’, (40) 

I S =  1+a,a’+a,a’2+... . (41 1 
The corresponding expansions for the terms 1 and q entering into (29) are 

(42) 
I’ 
a’ ’ 

1 = l o + -  

with 
(l+M€)Z 1 

O -  (1-M)Z 8 ’  
1 =  - 

I‘ = l o - ,  1 + €  

(43) 

(44) 

and q = qo(l +ia’-&a’,+ ...), 

with 

Substituting these expressions into (29) and grouping together the terms of equal 
power in a’, there results 

- N  
ISl = -, 

10 

where we have used the definition 

(47 ) 

We may also expand the term d entering into (39), 

leading finally to 

Although it is not easy to extract an accurate slope from the experimental data in 
order to determine an experimental value ford,, we will still plot approximate values 
determined with errors around 10-15 %. These data are shown in figure 2 along with 
the theoretical predictions of (51), and confirm our previous observation on the 
deficiency of the theory for values of xp beyond 0.6. 

There are two main sources of error in our Euler model. Firstly, viscosity and 
heat-conduction effects have been neglected. Secondly, even if one were to keep these 
terms in a rigorous two-fluid Chapman-Enskog theory, the corresponding predictions 
would still be in error, at least for the two limits of pure gases, xp = 0 and xp = 1. 
This is a well-known consequence of the fact that dispersion is a second-ord-r effect 
in the frequency, while the Navier-Stokes equations are correct only to first order. 
Interestingly enough, however, dispersion effects for pure gases are of order M2 
smaller than those due to the coupling of the two gases. For a pure gas, the only 
characteristic speed available is the sound speed, c,, and the frequency can be made 
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FIQURE 2. Dispersion coefficient d, = [ d ( ~ , / c ~ ) / d s ’ ~ ] ~ . , ~  as a function of the Xenon molar fraction 
5. Data symbols are extracted from the measurements of Fuentes Losa (1972), except for those 
at xp = 0 and zp = 1 ,  which are taken from the calculation of Wang Chang & Uhlenbeck (1970) 
for Maxwell molecules. 

dimensionless only through the ratio of the pressure and the viscosity coefficient. The 

is therefore a quantity of order one, which Wang Chang & Uhlenbeck (1970) and Foch 
& Fuentes Losa (1972) report to be equal to 1.075 for the special case of Maxwell 
molecules, and which appears to be nearly independent of the intermolecular 
potential. Accordingly, our dispersion parameter d ,  can be obtained straightforwardly 
for the case of pure gases as - 

d, = a, - [m”, mD(n + np) 
(53) 

which is clearly a quantity of order M2,  taking at room temperature the values 
d, = 0.0054 and d ,  = 0.0073 for pure He and pure Xe, respectively. Considering that 
the values of d, due to the interaction between the two species is as large as 
0.22 (xp = 0.08), these pure-gas dispersion effects are negligible for all concentrations 
in the interval 0 < xp < 0.4. But in the region beyond xp = 0.4 the dispersive 
mechanisms due to energy and momentum transfer between the two species are 
relatively weak (at most four times greater than d, for pure Xe), so that viscosity 
and heat conductivity effects can no longer be neglected. 

In  conclusion, the model correctly predicts dispersion effects whenever these are 
important. But it contains errors of the order of the prediction itself in the region 

13 PLY 188 
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x, 2 0.5 where dispersion phenomena are small and comparable to  those due to the 
pure heavy gas. Perfecting our treatment requires second-order corrections to the 
present Euler model. A two-fluid Chapman-Enskog theory would not be sufficient, 
although it  would contain errors of order M2 only. 

Also, it is worth commenting on the validity of our closure in the region xp 6 1. 
There, the heavy gas is so dilute and has such a long self-equilibration time that it 
relaxes towards a Maxwellian velocity distribution function due mainly to  collisions 
with the light gas, within times of order 7 .  Then, the viscous contributions to the 
partial pressure of the heavy species are comparable t o  np kTp, and the Euler closure 
p ,  = n, kT, is very inaccurate. Nonetheless, the model still works well because, a t  
small x,, y is of order unity, and the pressure term in (24) is small, of order M .  
Fortunately, the situation is such that the closure for the pressure tensor of the heavy 
species fails only in the region where the term is altogether negligible. I n  the opposite 
(Lorentz) limit, 1-x, 6 1,  the Maxwellization of the light gas is still very fast, and 
our closure remains valid. 

Finally, we do remark again that a theory predicting dispersion in mixtures for 
the whole range of concentrations is available for the case of Maxwell molecules (Foch 
et al. 1972), and agrees well with experiments (Fuentes Losa & Foch 1972; Fuentes 
Losa 1972). But such a theory is based on a frequency expansion, and holds only for 
small values of 8’. It did, nonetheless, succeed in predicting negative dispersion 
coefficients well before any two-temperature or two-fluid theory. Bowler & Johnson 
(1985) have also pointed out that, in the frequency expansion of Foch et al. (1977), 
the slow mode degenerates into the diffusion mode a t  low frequencies, while it 
degenerates into the thermal mode in their own theory. These authors attribute this 
disagreement to  the ‘approximate calculations’ involved in the work of Foch et al. 
(1972). Yet, their frequency expansion solution is exact (for Maxwell molecules) at 
the low frequencies where the diffusion mode emerges. One cannot therefore so easily 
discard the conclusions of Foch et al. (1972). It is interesting to  note that the thermal 
mode is absent from the two-fluid Euler model; but the diffusion mode is included, 
because the laws of diffusion result from a low-frequency momentum balance fully 
contained in our two momentum conservation equations. Indeed, the s‘+O limit of 
our second mode leads to  the dispersion relation h2 = -iw/D, confirming its 
identification as a diffusion mode. But in that case the neglected heat flux of (7) is 
comparable to the terms retained, even in the limit where xp is small. We cannot then 
take our own predictions on the small frequency behaviour of the slow mode very 
seriously. 

6. Strengths and limitations of the theory, and higher-order extensions 
A first look a t  the present problem has revealed the existence of two dimensionless 

frequencies: w,uclp, and w r ,  of which the first is smaller than the second by a factor 
M ,  and measures the importance of viscosity and heat conductivity, while the group 
07 measures the importance of temperature relaxation (also of slip velocity when xp 
is small). Such a picture gives the impression that a two-fluid theory ignoring viscosity 
and heat conductivity (Euler level) would contain errors of the order of M only, while 
temperature separation would dominate over velocity differences except for small 
values of xp. Yet, for the acoustic problem, both of these expectations are deceptive. 
Because the main driving force for temperature differences is the velocity slip, 
temperature and velocity differences are of similar magnitude, being dominant over 
viscosity and heat conductivity only in the region of small xp, where the velocity slip 
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relaxation time 7, = 7 / (  I + 8) is small with respect to,ut/pi (that is, M-l B- 6). A second 
surprise comes at the finding that a two-fluid Euler theory is not uniformly valid to 
order M in all the range of concentrations, but only for small values of xp. Upon closer 
examination one realizes that, again, spatial gradients are responsible for this 
behaviour. A Knudsennumber analogous topLf w / p t ,  but now based on the wavenumber 
A ,  promotes the importance of heat conductivity when the wavelength becomes 
smaller as a result of the decrease in sound speed upon increase of xp. Of our four 
governing equations three are correct to first order in M ;  but the heat conductivity 
ignored in the energy equation for the light gas is comparable to the other terms 
retained when xp is of order one. This observation has some interesting implications; 
aside from making our theory highly suspect when xp = O(l ) ,  it also tells us that 
first-order theories (including heat conductivity and viscosity) will not yield accurate 
predictions either unless their transport coefficients are correct, since such ‘ first order’ 
terms have been seen to be comparable to the convective terms in the energy 
equation. Unfortunately, the correct transport coefficients needed are not those 
appearing in the 13-moment approach of Goebel et al., because Grad’s method is not 
a systematic perturbation theory with errors of the order of a small parameter (a 
Knudsen number). Furthermore, the alternative approach of Goldman & Sirovich’s 
(1967) two-fluid theory for Maxwell molecules fails also to yield correct transport 
coefficients. Therefore, a complete two-fluid Chapman-Enskog theory with realistic 
intermolecular potentials is called for before an accurate prediction of sound 
propagation speeds in He-Xe mixtures may be given over the whole range of 
concentrations. This fact is in itself a good motivation to undertake such a laborious 
kinetic exercise. On the other hand, if one is interested in the behaviour of 
disparate-mass mixtures diluted in the heavy component, the present analysis shows 
that, for He-Xe mixtures, the two-fluid Euler level is excellent up to an unexpectedly 
high value of xp = 0.4. Such a conclusion has the very considerable importance of 
making it possible, in principle, to extend the methods of boundary layer theory to 
problems involving relaxing disparate-mass mixtures. Also, the mathematical problem 
posed by the two-fluid Euler equations becomes physically relevant. It might even 
be possible to extend classical potential theory to a two-fluid system, as Robinson 
(1956) has already done for the case of an incompressible dust-laden gas (see also 
Fernandez de la Mora & Rosner 1981). 
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much to the hospitality of Dr A. LiiiBn. Partial support of the Yale Junior Faculty 
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